الرقم الأولي هو عدد صحيح أكبر من 1 ،

وتكون عوامله الوحيدة 1 ونفسها العامل هو عدد صحيح ، ويمكن تقسيمه بالتساوي إلى رقم آخر ،

والأرقام الأولية القليلة الأولى هي 2 و 3 و 5 و 7 و 11 و 13 و 17 و 19 و 23 و 29 ،

أما الأرقام التي تحتوي على أكثر من عاملين تسمى الأرقام المركبة ، والرقم 1 ليس أولي ولا مركب.

والأعداد الأولية هي أرقام خاصة لا يمكن تقسيمها إلا عن طريق رقم واحد ، ف 19 هو رقم أولي ،

يمكن تقسيمها فقط على 1 و 19 ، والرقم 9 ليس رقمًا أوليًا ، يمكن تقسيمها على 3 بالإضافة إلى 1 و 9.

العدد الأولي الأكبر

لكل عدد أولي( ص) ، يوجد رقم أولي (ص) ، مثل هذا (ص) ، أكبر من (ص) ، هذا البرهان الرياضي ،

الذي أظهره عالم الرياضيات اليوناني إقليدس في العصور القديمة ، ويؤكد صحة الفكرة القائلة ،

بأنه لا يوجد رقم أولي أكبر ، مع استمرار مجموعة الأرقام الطبيعية ، ن = (1 ، 2 ، 3 ،… ) ،

ومع ذلك فإن العائدات الأولية تصبح أقل تكرارًا بشكل عام ، ويصعب العثور عليها في فترة زمنية معقولة ،

حتى كتابة هذه السطور ، كان أكبر رقم أولي معروف يحتوي على 24862048 رقم ،

تم اكتشافه في 2018 من قبل باتريك لاروش من شركة الإنترنت الكبرى ، Mersenne Prime Search (GIMPS).

دليل إقليدس على وجود عدد لا نهائي من الأعداد الأولية

ولإثبات وجود عدد لا نهائي من الأعداد الأولية ، استخدم إقليدس نظرية أساسية أخرى كانت معروفة له ،

وهي العبارة التي تقول (يمكن كتابة كل رقم طبيعي كمنتج للأرقام الأولية) ، فمن السهل إقناع حقيقة هذا الادعاء الأخير ،

إذا اخترت رقمًا غير مركب ، فسيكون هذا الرقم أوليًا.
خلاف ذلك ،

يمكنك كتابة الرقم الذي اخترته كمنتج من رقمين أصغر ، وإذا كان كل من الأرقام الأصغر هو أولي ،

فقد عبرت عن رقمك كمنتج للأرقام الأولية ، وإذا لم يكن الأمر كذلك ، فاكتب الأرقام المركبة الصغيرة كمنتجات ذات أرقام أصغر ، وما إلى ذلك.

وفي هذه العملية ، يمكنك الاستمرار في استبدال أي من الأرقام المركبة بمنتجات ذات أرقام أصغر ،

نظرًا لأنه من المستحيل القيام بذلك إلى الأبد ، يجب أن تنتهي هذه العملية ، ولا يمكن تقسيم جميع الأرقام الصغيرة

التي ينتهي بها الأمر ، مما يعني أنها أرقام أولية ، كمثال لنقم بتقسيم الرقم 72 إلى عوامل رئيسية :

72 = 12 × 6 = 3 × 4 × 6 = 3 × 2 × 2 × 6 = 3 × 2 × 2 × 2 × 3.

واستنادًا إلى هذه الحقيقة الأساسية ، يمكننا الآن شرح دليل إقليدس على ما لا نهاية لمجموعة الأعداد الأولية ،

عدد لا نهائي من الأعداد الأولية

وسنوضح الفكرة باستخدام قائمة الأعداد العشرة الأولى ، ولكننا نلاحظ أن هذه الفكرة نفسها تعمل مع أي قائمة محدودة من الأعداد الأولية.

فبضرب جميع الأرقام في القائمة ونضيف رقمًا إلى النتيجة ، ونعطي الاسم N للرقم الذي نحصل عليه ،

فقيمة N لا تهم في الواقع حيث يجب أن تكون الوسيطة صالحة لأي قائمة :
N = (2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 × 23 × 29) +1
ويمكن

كتابة الرقم N ، تمامًا مثل أي رقم طبيعي آخر ، كمنتج للأرقام الأولية ، من هم هؤلاء الأوائل ، العوامل الرئيسية لـ N؟

لا نعلم ، لأننا لم نحسبها ، ولكن هناك شيء واحد نعرفه على وجه اليقين : أن جميعهم يقسمون N.

لكن الرقم N يترك باقي واحد عند قسمة ، على أي من الأعداد الأولية في قائمتنا 2 ، 3 ، 5 ، 7 ، … ، 23 ، 29 ،

ومن المفترض أن تكون هذه قائمة كاملة بأساسياتنا ، لكن لا أحد منهم يقسم N ، لذا فإن العوامل الأساسية لـ N ليست

في تلك القائمة ، وعلى وجه الخصوص يجب أن يكون هناك الأعداد الأولية الجديدة بعد 29.كيفية تحديد ما إذا كان الرقم أوليًا

كيفية تحديد ما إذا كان الرقم أوليًا

يمكن استخدام الكمبيوتر لاختبار أعداد كبيرة للغاية ، لمعرفة ما إذا كانت أولية ، ولكن لأنه لا يوجد حد لمقدار العدد الطبيعي ،

الذي يمكن أن يكون ، فهناك دائمًا نقطة يصبح فيها الاختبار بهذه الطريقة ، مهمة كبيرة جدًا ، حتى بالنسبة لأقوى أجهزة الكمبيوتر العملاقة.

وقد تمت صياغة خوارزميات مختلفة ، في محاولة لتوليد أعداد أولية أكبر من أي وقت مضى ،

فعلى سبيل المثال ، لنفترض أن (n) عدد صحيح ، ولا يُعرف بعد ما إذا كان (n) رئيسًا أو مركبًا ،

وهو رقم موجب ، يمكن إجراؤه عن طريق ضرب عددين أصغر معًا.[2]
فأولاً ،

خذ الجذر التربيعي أو قوة 1/2 – من n ، ثم تقريب هذا الرقم إلى أعلى رقم صحيح ثاني التالي واستدعاء النتيجة m ، ثم ابحث عن كل الحاصل التالي :


qm = n / m
q(m-1) = n / (m-1)
q(m-2) = n / (m-2)
q(m-3) = n / (m-3)
. . .
q3 = n / 3
q2 = n / 2
فالرقم n هو أولي إذا ، وفقط إذا ، لا شيء من q ، كما هو مشتق أعلاه ، هو أرقام صحيحة.

الأعداد الأولية والتشفير

يتبع التشفير دائمًا قاعدة أساسية ، أنه لا يحتاج الخوارزمية ، أو الإجراء الفعلي المستخدم ، للحفاظ على سرها ،

ولكن المفتاح يفعل ذلك ، حتى أكثر القراصنة تعقيدًا في العالم لن يتمكنوا من فك تشفير البيانات طالما أن المفتاح لا يزال سريًا ،

والأرقام الأولية مفيدة جدًا لإنشاء المفاتيح
فعلى سبيل المثال ،

تكمن قوة تشفير المفتاح العام أو الخاص ، في حقيقة أنه من السهل حساب منتج رقمين أوليين يتم اختيارهم عشوائيًا ،

ولكن قد يكون من الصعب جدًا ، ويستغرق وقتًا طويلاً لتحديد أي رقمين رئيسيين ، تم استخدامهما لإنشاء رقم منتج كبير ،

عندما يكون المنتج معروفًا فقط.
ففي RSA ((Rivest-Shamir-Adleman) مفتاح التشفير العام ، من المفترض دائمًا أن تكون الأعداد الأولية فريدة ،

والأساسيات التي يستخدمها تبادل مفاتيح Diffie-Hellman ، ومخططات تشفير معيار التوقيع الرقمي (DSS) ،

ومع ذلك يتم توحيدها واستخدامها بشكل متكرر ، من قبل عدد كبير من التطبيقات.

حقيقة رقم 11 كعدد أولى

من الممكن معرفة استخدام الطرق الرياضية سواء كان العدد الصحيح ، هو رقم أولي أم لا ، وبالنسبة إلى 11 ،

فنعم هو هو عدد أولى ، و 11 هو رقم أولي لأنه يحتوي على قسمين منفصلين فقط ، 1 ونفسه (11).

تردد الأعداد الأولية

وعن تكرار الأعداد الأولية ، وكم عدد الأعداد الأولية الموجودة ، فتقريبًا بين (مليون ومليون بالإضافة إلى ألف) ،

والكم يتراوح بين (مليار ومليار زائد ألف ، وهنا يأتي السؤال هل يمكننا تقدير عدد الأعداد الأولية بين تريليون وتريليون زائد ألف؟.

وتكشف الحسابات أن الأعداد الأولية تصبح أكثر ندرة ، مع زيادة الأعداد ، ولكن هل من الممكن ذكر نظرية دقيقة تعبر

عن مدى ندرة هذه الأشياء بالضبط ، وبالفعل تم ذكر هذه النظرية لأول مرة كحد التخمين ، و(تسمى أيضًا الفرضية) ،

وهي عبارة رياضية يعتقد أنها صحيحة ، ولكن لم يتم إثباتها بعد ، فيمكن أن ينتج (الإيمان بالصلاحية) ، من التحقق من الحالات الخاصة ،

أو الأدلة الحسابية ، أو الحدس الرياضي ، وهناك تخمينات رياضية لا يزال الناس يختلفون حولها.

من قبل عالم الرياضيات الكبير كارل فريدريش غاوس في 1793 م ، في سن 16 ، وفي عالم الرياضيات القرن التاسع عشر برنهارد ريمان ،

الذي أثر على دراسة الأعداد الأولية في العصر الحديث ، أكثر من أي شخص آخر ، طور أدوات أخرى مطلوبة للتعامل مع عليه.

ولكن تم تقديم إثبات رسمي للنظرية فقط في عام 1896 ، بعد قرن من ذكره ، والمثير للدهشة أنه تم تقديم برهانين مستقلين في نفس العام ،

من قبل الفرنسي جاك هادامارد ، والبلجيكية دي لا فالييه بوسين ، ومن المثير للاهتمام أن نلاحظ أن كلا الرجلين ولدوا في وقت وفاة ريمان ،

ونظرية ثبت أنها تلقت اسم (نظرية العدد الأولي) نظرا لأهميتها.
إن الصياغة الدقيقة لنظرية العدد الأولي ،

حتى أكثر من ذلك ، تتطلب تفاصيل الدليل ، رياضيات متقدمة لا يمكننا مناقشتها ، ولكن بشكل أقل دقة ،

تنص نظرية الأعداد الأولية على أن تكرار الأعداد الأولية حول x يتناسب عكسًا مع عدد الأرقام في x.

وفي المثال أعلاه ، سيكون عدد الأعداد الأولية في (نافذة) بطول 1000 حوالي مليون

(مما يعني الفاصل الزمني بين مليون ومليون وألف) 50٪ أكبر من عدد الأعداد الأولية في نفس (النافذة) حوالي مليار (النسبة 9: 6 ، تمامًا مثل النسبة بين عدد الأصفار في مليار ومليون) ،

وحوالي ضعف عدد الأعداد الأولية في نفس النافذة حوالي تريليون (حيث نسبة عدد الأصفار هي 12: 6).

وفي الواقع ، تظهر حسابات الكمبيوتر أن هناك 75 رقمًا رئيسيًا في النافذة الأولى ، 49 في الثانية و 37 فقط في الثالثة ،

بين تريليون وتريليون زائد ألف.